
MIATHEMATICS OF COMPUTATION 
Voltunle 68, Numlber 227, Pages 1025-1055 
S 0025-5718(99)01062-5 
Article electronically publDlished on Febrtiary 13, 1999 

GENERALIZED MONOTONE SCHEMES, 
DISCRETE PATHS OF EXTREMA, 

AND DISCRETE ENTROPY CONDITIONS 

PHILIPPE G. LEFLOCH AND JIAN-GUO LIU 

ABSTRACT. Solutions of conservation laws satisfy the monotonicity property: 
the number of local extrema is a non-increasing function of time, and local 
maximum/minimum values decrease/increase monotonically in time. This pa- 
per investigates this property from a numerical standpoint. We introduce a 
class of fully discrete in space and time, high order accurate, difference schemes, 
called generalized monotone schemes. Convergence toward the entropy solu- 
tion is proven via a new technique of proof, assuming that the initial data has 
a finite number of extremum values only, and the flux-function is strictly con- 
vex. We define discrete paths of extrema by tracking local extremum values 
in the approximate solution. In the course of the analysis we establish the 
pointwise convergence of the trace of the solution along a path of extremum. 
As a corollary, we obtain a proof of convergence for a MUSCL-type scheme 
that is second order accurate away from sonic points and extrema. 

1. INTRODUCTION 

This paper deals with entropy solutions of the Cauchy problem for a one- 
dimensional scalar conservation law: 

(1.1) atu + ?Xf(u) = 0, u(x, t) E IR, t > 0, x E IR, 

(1.2) u(x,0) = uo(x), x EItR, 

where the flux f: R --> R is a given function of class C2 and the initial data uo 
belongs to the space BV(IR) of all integrable functions of bounded total variation. 
For the main result of this paper, we assume that 

(1.3) f is a strictly convex function 

and 

(1.4) uo has a locally finite number of extrema. 
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Solutions to conservation laws are generally discontinuous, and an entropy criterion 
is necessary to single out a unique solution. We refer the reader to Lax [20], [21] 
for background on nonlinear hyperbolic equations and the entropy criterion. 

As is well-known [19], [37], problem (1.1)-(1.2) admits a unique entropy solution u 
in L? (R+, BV(IR)) and Lip (IR+; L1 (R)). (This result holds without the restriction 
(1.3)-(1.4) and for multidimensional equations as well.) To select the solution one 
can use the distributional entropy inequality 

(1.5) atU(u) + 8xF(u) < 0, 

where the (Lipschitz continuous) function (U, F): R > R 2 is a convex entropy- 
entropy flux pair, i.e. U is a convex function and F' = U'f'. One can also use the 
Lax shock admissibility inequality 

(1.6) u(x-, t) > u(x+, t) 

for all x and t. Since f is convex and u has bounded variation, a single entropy 
U in (1.5) is sufficient to ensure uniqueness, and (1.6) is equivalent to (1.5). At 
the discrete level, however, conditions (1.5) and (1.6) leads two drastically different 
notions of consistency with the entropy criterion for a difference scheme. In the 
present paper we will be using both conditions. Indeed in some regions of the (x, t) 
plane it is easier to use a discrete version of (1.5), while in other regions (1.6) is 
more adapted. 

We are interested in conservative discretizations of problem (1.1)-(1.2) in the 
sense of Lax and Wendroff [22]. The monotone schemes and, more generally, the 
E-schemes are large classes of schemes (including the Godunov and Lax-Friedrichs 
schemes) for which a convergence analysis is available. The main point is that 
monotone schemes satisfy a discrete version of the entropy inequality (1.5) (see 
(2.9) below). However they turn out to be first order accurate only, and so have 
the disadvantage of introducing a large amount of numerical viscosity that spreads 
the discontinuities over a large number of computational cells. 

The proof of convergence of the monotone schemes and E-schemes is based on 
Helly's and Lax-Wendroff's theorems. See [3], [6], [8], [11], [16], [26], [31], [35], [23] 
and the references therein. The result holds even for multidimensional equations 
and/or when irregular (non-Cartesian) meshes are used. 

To get high-.order accurate approximations, it is natural to proceed from ana- 
lytical properties satisfied by the entropy solutions to (1.1), formulate them at the 
discrete level, and so design large classes of high-order difference schemes. One 
central contribution in this direction is due to Harten [13], [14], who introduced 
the concept of TVD schemes, for "Total Variation Diminishing". Harten shows 
that conservative, consistent, TVD schemes necessarily converge to a weak solution 
to (1.1). Moreover such schemes possess sharp numerical shock profiles with no 
spurious oscillations. However, Harten's notion of TVD scheme is weaker than the 
notion of monotone scheme, and a TVD need not converge to the entropy solution. 
The aim of this paper is precisely to single out a subclass of TVD schemes, refining 
Harten's notion, that are both high-order order accurate and entropy satisfying, 
cf. Definition 2.2 below. 

A very large literature is available on the actual design of second-order shock- 
capturing schemes. One approach to upgrading a first order scheme was proposed 
by van Leer [23], [24]: the MUSCL scheme extends the Godunov scheme by re- 
placing the piecewise constant approximation in the latter with a piecewise affine 
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approximation. The heart of the matter is to avoid the formation of spurious oscil- 
lations near discontinuities. This is achieved by van Leer via the so-called min-mod 
limitor. 

Other classes of high order schemes have been built from the maximum principle 
and a monotony condition: see the classes of ENO and UNO schemes proposed 
by Harten, Engquist, Osher, and Chakravarthy [15]. In this paper we concentrate 
attention on the MUSCL scheme, but our main convergence theorem, Theorem 2.3 
below, should also be applicable to other schemes. 

After Osher's pioneering result [32] and the systematic study of high-order 
schemes by Osher and Tadmor [33] (which however required a technical condi- 
tion on the slopes of the affine reconstructions), Lions and Souganidis [27], [28] 
and, independently, Yang [38] established the convergence of the MUSCL scheme. 
Both proofs apply to an arbitrary BV initial data (so (1.4) is not assumed); the 
flux-function is assumed to be convex in [38] and strictly convex in [28]. In both 
papers significantly new techniques of proof are introduced by the authors. In [38], 
Yang develops a method for tracking local extremum values. In [28], Lions and 
Sougadinis elegantly re-formulate the MUSCL scheme at the level of the Hamilton- 
Jacobi equation associated with (1.1) and rely on Crandall-Lions' theory of viscosity 
solutions for such equations. A large class of difference approximations is treated in 
[28]. Techniques in both papers are restricted in an essential way to semi-discrete 
schemes, in which the time variable is kept continuous. In [25] the present authors 
announced a proof of the convergence of a class of fully discrete schemes that in- 
clude the MUSCL scheme. Independently, Yang [39] also extended his approach to 
a large class of fully discrete methods. 

Several other works deal with the convergence of van Leer's scheme or variants 
of it. A discrete version of inequality (1.6) was established by Brenier and Osher 
[2] and Goodman and LeVeque [12], the latter dealing with both first and second 
order methods. Nessyahu, Tadmor, and Tamir [30] establish both the convergence 
and error estimates for a variety of Godunov-type schemes. Various approaches 
to upgrading Lax-Friedrichs scheme are actively developed by Tadmor and co- 
authors; see, for instance, Nessyahu and Tadmor [29]. An extensive discussion 
of the discretization of the entropy inequality (1.5) is found in Osher and Tadmor 
[33] and the many references cited theirein. See also Bouchut, Bourdarias and 
Perthame [1], and Coquel and LeFloch [4]. 

The objective of the present paper is to provide a framework to prove the conver- 
gence of high order accurate and fully discrete difference schemes. We will strongly 
rely on a property shared by all entropy solutions to (1.1): the monotoni city prop- 
erty. Given an arbitrary entropy solution u, the number of extrema in u(t) is a 
non-increasing function of t, and local maximum/minimum values decrease/increase 
monotonically in time. (See the Appendix for rigorous statements.) This property 
was studied first by Harten [13] from the numerical standpoint, in order to arrive 
at his notion of TVD scheme. It was also essential in [28], [38] and [36]. 

Observe that monotone or TVD schemes do not necessarily satisfy the mono- 
tonicity property. For instance the Lax-Friedrichs scheme may increase the nuni- 
ber of extremum values! This motivates the introduction of a subclass of TVD 
schemes, guaranteeing this property together with the high order of accuracy. The 
scheme then closely mimics an important property of the solutions to the contin- 
uous equation. A further requirement is necessary to ensure that the scheme is 
entropy-satisfying. 
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Based on the monotonicity property, we thus introduce the notion of generalized 
monotone scheme (Definition 2.2) characterized by three conditions: maximum 
principle, entropy consistency, and local behavior at extrema. The (first order) 
Godunov method and the (second order) MUSCL method are prototype examples. 

Our first requirement is a (strong) version of the local maximum principle, which 
will allow us to show a discrete analogue of the monotonicity property. In particular 
our condition prevents the formation of spurious numerical oscillations, and the 
scheme is TVD in the sense of Harten. 

The second requirement is motivated by the following observation made by Os- 
her for semi-discrete schemes [31]: in the non-decreasing parts of the approximate 
solutions, it is possible to simultaneously achieve second order accuracy and the ex- 
istence of one cell entropy inequality -i.e. a discrete analogue of (1.5). Our second 
condition therefore requires a cell entropy inequality in the non-decreasing regions. 

Finally, in order to prevent cusp-like behavior near extrema, which may lead 
to entropy violating discontinuities, the scheme should be well-behaved near local 
extrema. To this end, we introduce a condition referred to as the quadratic decay 
property at local extrema. It reflects the nonlinear behavior of the numerical flux- 
function near extrema, and assumption (1.3) again is essential. For simplicity, it 
is also assumed that the scheme reduces to a three points, first order scheme at 
extrema. 

The rest of this section is devoted to comments upon the proof of our main result 
that any generalized monotone scheme converges to the entropy solution of (1.1)- 
(1.2) provided (1.3)-(1.4) holds. Our approach was driven by Yang's paper [38] on 
semi-discrete schemes. However, our technical arguments differ substantially from 
the ones in [38]. In particular we restrict attention to initial data having a locally 
finite number of extrema, making the tracking of paths of extremum values almost 
a trivial matter. The main part of our proof is studying the convergence of the 
traces of the approximate solution along it. We make use of the quadratic decay 
property above to exclude the formation of a "cusp" near extremum values, which 
could lead to entropy-violating shock. This is the main contribution of this presenlt 
paper. We do not believe that the extension of our proof to arbitrary BV data is 
straightforward. The result we obtain seems satisfactory, however, since condition 
(1.4) covers "generic" initial data. 

The proof distinguishes between the non-increasing parts and non-decreasing 
parts of the solution, and is based on several observations, as follows. We use the 
notation uh' for the approximate solutions, v for the limiting solution, and h for the 
mesh size. 

First of all, the strong maximum principle ensures that the uh 's are total vari- 
ation diminishing in time, so of uniformly bounded total variation. The strong 
maximum principle makes it easy for us to define a discrete path, and with each 
time step the discrete path moves at most one grid point. As a consequence, the dis- 
crete path is Lipschitz continuous. (This is a major difference between the present 
paper and Yang's paper, in which the construction of the path and the limiting 
paths is much more involved.) 

By Helly's Theorem, the scheme converges in the strong L1 topology to a limit- 
ing function, say v, which according to Lax-Wendroff's theorem is a weak solution 
to (1.1)-(1.2). It remains to prove that v is the entropy solution. We show that 
the strong maximum principle in fact implies a discrete analogue of the monotonic- 
ity property. Relying on (1.4), we construct a (locally) finite family of Lipschitz 
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continuous paths in the plane by tracking the local extrema in uh. The paths are 
shown to converge in the uniform topology to limiting curves. 

Next we make the following two observations. On one hand, in a non-increasing 
region for uh, the function v is also non-increasing, and so can only admit non- 
increasing jumps. Thus v satisfies the Lax shock admissibility inequality (1.6) in 
the non-increasing regions. On the other hand, a discrete cell entropy inequality, 
by assumption, holds in the non-decreasing regions of uh. So v satisfies (1.5) in the 
non-decreasing regions. 

It remains to prove that v has only non-increasing jumps along any path of 
extrema. This is the most interesting part of the proof. Let f/h be an approximate 
path of extrema, and let 4' be its uniform limit. The path 4' is the boundary 
separating two regions where the analysis in the paragraph above applies. Indeed, 
(1.5) holds in the side where v is non-increasing and (1.6) holds in the side where 
v is non-decreasing. A specific proof must be provided to determine the behavior 
of v along the path. We analyze the entropy production in a small region of the 
plane limited on one side by the path 4'h. In the course of this proof we derive a 
uniform bound for the time integral of the local oscillation in space along the path 
b h, which is a direct consequence of the quadratic decay property mentioned above. 

For the sake of simplicity, we use here the assumption that the scheme reduces to 
a three points, first order scheme at extrema. 

Note that assumption (1.3) is not used in the construction of the extremum 
paths, but is essential in the convergence analysis which strongly relies upon (1.6), 
only valid for convex fluxes. 

Our analysis shows that, for a class of difference schemes, certain approximate 
generalized characteristics those issuing from an extremum point of the initial 
data can be constructed for scalar conservation laws with convex flux. Construct- 
ing approximate generalized characteristics issuing from an arbitrary point remains 
a challenging open problem. Recall that, for the random choice scheme, Glimm-Lax 
[10] did obtain a general theory of approximate generalized characteristics (appli- 
cable to systems, as well). 

The organization of this paper is as follows. In Section 2, we define the class of 
generalized monotone schemes and state the main result of convergence, Theorem 
2.3. Section 3 contains the proof of the main result. In Section 4, we apply Theorem 
2.3 to the MUSCL scheme and provide some additional remarks. 

2. GENERALIZED MONOTONE SCHEMES 

This section introduces a class of TVD schemes which are built to closely mimic 
an essential property of the entropy solutions to (1.1), i.e. the monotonicity prop- 
erty: the number of local extrema is a non-increasing function of time, and local 
maximum/minimum values decrease/increase monotonically in time. See the Ap- 
pendix for a precise statement. Here we investigate this property from a numerical 
standpoint. Monotone and TVD schemes actually-do not necessarily satisfy this 
property (see Section 4 for an example), and a more restricted class, the generalized 
monotone schemes, is natural. 

We consider a (2k + 1)-point difference scheme in conservation form for the 
approximation of (1.1)-(1.2): 

(2.1) un+1 = un -A(gn?/2-YX-1/2), n _0,j E 
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where we use the notation n97+1/2 = g(U 1 'k+1 . k), and A = r/h is the ratio 
of the time-increment r by the space-increment h. We set tn = nT, xj = jh, and 
Xj+l/2 (j + 1/2)h. The value UO presumably is an approximation of the exact 
solution at the point (xj, t,). As usual, the numerical flux g: R2k -4 R is assumed 
to be locally Lipschitz continuous and consistent with f, i.e. g(v,..., v) f(v) for 
all v. Note that g may depend on A. For definiteness, we set 

1 (Xj?1/2 

(2.2) -o Uo(y) dy. 
Xj1/2 

This is sufficient for second order accuracy. For higher orders, one should use a 
Runge-Kutta time-step method (Shu [34]). We also define the piecewise constant 
function uh ItR x R+ -4 IR by 

(2.3) u (xt) U3, tn < t < [n?i, Xj_/2 < X < Xj+l/2- 

By construction u h is a right continuous function. For simplicity we assume the 
following CFL restriction: 

(2.4) A sup If'(v) I < 1/4. 
v 

Several of the properties below would still hold if, in (2.4), one replaces 1/4 by 1, 
although the proofs then become less clear geometrically. 

The (first order) Godunov scheme is based on exact solutions to (1.1), and is a 
good prototypical example to lead us to defining a class of (high order) schemes 
consistent with the monotonicity property. 

A main ingredient is the Riemann problem. Given two states v and w, we define 
R(.; v, w) to be the entropy solution to (1.1)-(1.2) with, here, 

uo(x) = v if x < O, uo(x) = w if x > O. 

As is well-known, R(.; v, w) depends on the self similarity variable x/t only, and is 
given by a closed formula. If v < w, R is a rarefaction wave; if v > w, a shock 
wave. More important, 

(2.5) R(x; v, w) is a monotone function connecting v to w. 
t 

In the Godunov scheme, one solves Riemann problems and, at each time level, 
one projects the solution on the space of piecewise constant functions. If uh (tn) is 
known, let ii(x, t) for t > tn be the entropy solution to (1.1) assuming the Cauchy 
data 

u(tn+) = Uh(tn[+) 

Since uh (tn+) is a piecewise constant function, u is obtained explicitly by gluing to- 
gether the Riemann solutions R(.; Un, Ujn ). In view of (2.4), there is no interaction 
between two nearby solutions, at least for t E (t,, trn+i). Set 

h ~ ~~~ rxj +1/2 
u (x tn+l+) = h / (y tn+l) dy, Xj-l/2 < X < Xj+1/2. 

Xj-1/2 

Using the conservative form of (1.1), the scheme can be written in the form (2.1) 
with k = 1 and g = YG given by 

(2.6) gG(v,W) = f(R(O+;v,w)) for all v and w. 
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The proofs of (2.7)-(2.10) stated below are classical; e.g. [3], [6], [16], [26]. On one 
hand, one can think of the Godunov scheme geometrically as a two-step method: 
a marching step based on exact (Riemann) solutions and an L2 projection step. In 
view of (2.5) and the monotonicity property of the L2 projection, one can easily 
get a simple geometrical proof of the properties listed below. On the other hand, 
an algebraic approach is based on the explicit formula deduced from (2.6). 

The Godunov scheme is monotone: the function gG is non-decreasing with re- 
spect to its first argument, and non-increasing with respect to its second. This 
property implies that the scheme is monotonicity preserving, i.e., 

if u70 u0 . , u 2 is a non-increasing (resp. non-decreasing) sequence 
(2.7) 31) 31 721 7-11 7? 

for some indices jh < 2, SO is the sequence u.+1),ujl+2,.. . ,uj2 

The Godunov scheme satisfies the local maximum principle, i.e., 

(2.8) min (ui,u,i+) ? ? < max (u ),ux u+J) 

for all n > 0 and j E Z. In fact (2.7) and (2.8) are shared by both steps in the 
Godunov scheme. It will be convenient for us to rewrite (2.8) in term of the jumps 
of uh at the endpoints of a cell: 

(2.8') 
m n nu+ - nX n_ ,0 < u n+1 - 0 < max (Unl -Un )Un -n 0). 

Any monotone scheme -in particular the Godunov scheme- satisfies a discrete 
analogue of (1.5) for every convex entropy pair (U, F): 

(2.9) U(u3) )-U(( - A(G + /2 - G-1/2) < 0, n > 0, j k Z. 

In (2.9), G?+1/2 kG(uk+l, ... , +k), and G is a numerical entropy flux consis- 
tent with F; that is, G(v, v ... , v) = F(v) for all v. 

Finally, concerning the local behavior of uh in the neighborhood of local extrema, 
it is known that, say for local maximum, 

n,721 < U (2.10) u - < . 

A similar property holds for local minima. 
In fact the classical properties (2.8) and (2.10) can be improved as follows. 

Proposition 2.1. Under assumptions (1.3) and (2.4), the Godunov scheme satis- 
fies the following two properties: 

1. The strong local maximum principle: 
(2.11) 

2 min (u v+l-u~-n u ) -u< Un+ 2 Un < I 
l n 

2. The quadratic decay property at local extrema, that is, e.g. for a maximum, 

(2.12) if u. is a local maximum value, +1 < u - ca min((U U ) 3 ~ ~ ~ ~ ~ 3 -3 in( 3uX)) 

with c= Ainff"/2. 

The proof of (2.11) is straightforward from a geometrical standpoint. If also 
follows from Proposition 4.1, to be established later in Section 4. Note that the 
coefficient 1/4 in (2.4) is essential for (2.11) to hold. Observe that (2.11) is stronger 
than (2.8)-(2.8') and controls the time-increment (i.e., u1+' - tt) of the solution 
in the cell j in term of the jumps at the endpoints: the values 0 evolves "slowly" 
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as t?l increases. As we shall see, this property implies that the scheme satisfies a 
discrete analogue of the monotonicity property. 

Estimate (2.12) is stronger than (2.10) and shows that the decrease/increase 
of a maximum/minimum is controlled by the quadratic oscillation of uth near this 
extremum. It is a truly nonlinear property of the Godunov flux. It will be used 
below to prove that a cusp cannot form near extremum points. For convenience, 
the proof of (2.12) is postponed to Section 4, where second-order approximations 
are treated as well. 

In [12], Goodman and LeVeque derive for the Godunov method a discrete version 
of the Oleinik entropy inequality. In particular, this shows that the Godunov scheme 
spreads rarefaction waves at the correct rate. Our estimate (2.12) is, at least in 
spririt, similar to this spreading estimate, and expresses the spreading of extremum 
values. 

We are now ready to introduce a class of high-order schemes based on the prop- 
erties derived in Proposition 2.1. 

Definition 2.2. The scheme (2.1) is said to be a generalized monotone scheme if 
any sequence {z('} generated by (2.1) satisfies the following three conditions: 

(1) the strong local maximum principle (2.11), 
(2) the cell entropy inequality (2.9) for one strictly convex pair (U, F) in any 

non-decreasing region, including local extrema, 
(3) the quadratic decay property at local extrema (2.12) for some constant ae > 0. 

It is also assumed that the numerical flux and the numerical entropy flux are es- 
sentially two-point functions at local extrema. 

According to Proposition 2.1, the (first order) Godunov scheme belongs to the 
class described in Definition 2.2. Section 4 will show that there exist high order 
accurate schemes satisfying the conditions in Definition 2.2. Our main convergence 
result is: 

Theorem 2.3. Let (2.1) be a generalized monotone scheme. Assume that assump- 
tions (1.3)-(1.4) hold together with (2.4). Then the scheme (2.1) 

(1) is L? stable, i.e., 

(2.13) inf it",7 < uj7'+ 1 < sup u77 n > 0,jEZ 

(2) is total variation diminishing, i.e., 

(2.14) E3 l Ij - un+j I < El3 l tn+ - n > 0 
jcZ jcZ 

(3) and converges in the Lp strong topology for all p E [1, oo) to the entropy 
solution of (1.1)-(1.2). 

The proof of Theorem 2.3 is given in Section 3. 
Theorem 2.3 is satisfactory from a practical standpoint. Suppose that u0 is an 

arbitrary BV function, and we wish to compute an approximation to the solution u 
of (1.1)-(1.2) of order E > 0 in the L1 norm. Let us determine first an approximation 
of ut(, say u0,E, that has a finite number of local extrema and is such that 

1tUO,E 
- 

UO01LI(R) < 8- 
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Applying a generalized monotone scheme to the initial condition uo, yields an 
approximate solution u h that, in view of Theorem 2.3, satisfies 

| - UE|IL1I(R) < o(h) < E 

for h is small enough, where u, is the entropy solution associated with the initial 
condition u0,,. Since the semigroup of solutions associated with (1.1) satisfies the 
L1 contraction property, one has 

11 UE -U||L1(R) < flu0,E - U01lLI(R) < 6, 

and therefore 

E -UILI(R) < ?|U 
- 

UF|L1(R) + ||UF 
- 

UIL1(R) 

< 2E. 

3. CONVERGENCE ANALYSIS 

The proof of Theorem 2.3 is decomposed into several lemmas, Lemmas 3.1-3.11. 
For the whole of this section, we assume that the hypotheses of Theorem 2.3 are 
satisfied. 

We introduce first some notation anld terminology. We call u' a local maximum 
or a local minimum if there exist two indices j* and j* with j< < j < j* such that 

n 77, ~ ~ ~ I 

Ut* Uj*+1 U* > max(u' Unu*+,) 

or 

uX uX +0= * < min(UX lUj* 

In such a case, there is no need to distinguish between the extrema Un , Un7 , 

u.*. Based on the strong maximum principle (2.11), we show in Lemmas 3.1 
3 

and 3.2 that the scheme satisfies a discrete form of the monotonicity property. We 
construct a family of paths in the (x, t)-plane by tracing in time the points where 
the approximate solution uh (t) achieves its local extremum values. One difficulty 
is proving that the initeraction of two (or more) paths does not create new paths, 
so the total number of paths at any given time remains less than or equal to the 
initial number of local extrema in u0. In passing we observe that an extremum 
point moves onie grid point at each time-step, at most. 

Lemma 3.1. For some j* < j*, suppose that the sequences u n 3, u 2,uj<i, 

Uj* and j*, uj*+J, uj*+2, Uj*+3 are two monotone sequences, no specific assump- 
tion beirng made on the values 0jn, j< ? i <j*. Then the nrumber v' of extrema irn 

the sequence 

Sn+l (Uj )3*-2<j'<j*+2 

is less than or equal to the number v of extrema irn 

Sn := (Ujn)j*-<jj*+- i 2<j<j*?2' 

When vl > 1, there exists a one-to-one correspondence between v' local extrema 
of Sn and the v' local extrema of Sn+1 with the followirng property: if a maxi- 

mum/miriimum 0 is associated with a maximum/miriimum Uj+l then 

(3.1) - jl < 1 and u n,+1 < u resp. Un+ > un 3i - , Ui/ j 
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Proof. We distinguish between various cases depending on the number of local 
extrema in the sequence Sn and construct the one-to-one correspondence. 

If Sn has no local extremum, for instance is non-decreasing, then S,+, is also 
non-decreasing. This indeed follows from the inequalities (2.11), which reduce in 
this case to 

*.. * < (u>_1 + Un) ? ut? ? 2 (u<i + un ) < u;j1+[ < 

Consider next the case that S, has exactly one local extremum, say a local 
maximum at some ul. The same argument as above shows that the sequences 
{u>+l}j < and {un'+1}1?1?j?j* are non-decreasin-g and non-increasing re- 

1j_,<j<1-1 
11+1<'+1<n+ 

spectively. Therefore we only need to exclude the case that both un+1 > u +1 

and u7j++ > u4 +1, which would violate the monotonicity property since S,+1 in 
this case would have two local maximum and one local minimum, so two new ex- 
trema. Indeed assume that the latter would hold; then using (2.11) at the points 
I1,1, and 1 + 1 gives us 

nm-+1 < n I + Un 
Ui-i -(l 

ul + muin (ul?i - a) ? u +, 

and 

u+ < ( 1+ ) 

which are incompatible with the inequalities Ujn+7 > un+1 and Un+jl > ult+. 
Consider now the case that Sn has two local extrema, say one local maximum 

at 1 and one local minimum at m with 1 < m. We distinguish between three cases: 
If 1 < m-2, then the two extrema cannot "interact" and the previous arguments 

show that the solution at time t,+1 has the same properties. 
If I = m - 2, the two extrema can interact. Using (2.11) at each point j = 

I-1,... ,1+3,onegets 

ul fl < 2 (Ul_ l) 

a77 + 2min (71 -a?) < U7s', 

and 

n+ 1( n I+ un 

and also 
4n+1 < 1 

1+1 -(ul+I + U'42), 

a1+2 + mm (1+2?1 -a1+2) ? a1+j2' 

and 

aTn+l < 1n u7 1+3 - 2 (U1+3 + 1+2)- 

It is not hard to see that these inequalities imply that Sn+: 
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(1) either has one maximum at j = 1-1, 1, or 1+1 and a minimum at j = 1+1, 1+2, 
or 1 + 3; 

(2) or is non-decreasing. 

In the first case, we achieve the property we wanted. In the second case, there is 
no extremum at the time t.,>+i. 

This analysis can be extended to the case that several extrema can "interact"; we 
omit the details. Property (3.1) is a consequence of condition (2.4): an extremum 
point can only move up to one grid point at each time step. C 

Consider the initial condition u0 and its approximation uh(0) defined by L2 
projection, cf. (2.2). Locate the minimum and maximum values in the initial data 
u0. For h much smaller than the minimal distance between two extrema, uh (0) has 
the same number of extrema as uo and the samne increasing/decreasing behavior as 
u0. Indeed, there exist indices Jh (0) for q in a set of consecutive integers E(uo) 
depending on u0 but not on h, such that 

(3.2) u? is non-decreasing for J(0) < i < 

u]is non-increasing for J221(0) < i ? J2<(0) 

Those indices are not uniquely determined in the case that uo is constant on an 
interval associated with a local extremum. Since u0 has a locally finite number 
of local extrema, there exists a partition of Z into intervals (j*, j*) in which the 
hypothesis of Lemma 3.1 holds. It is an easy matter to use the one-to-one corre- 
spondence in Lemma 3.1 and trace forward in time up to time t1 = T the locations 
of the extrema in (j*,j*) . At each time level a (posgsibly new) partition of Z is 
considered and Lemma 3.1 is used again. Indeed, the values J/J (n + 1) in Lemma 

3.2 below are defined from the Jh (n)'s according to the one-to-one correspondence 
established in Lemma 3.1. Finally, piecewise affine and continuous paths are ob- 
tained by connecting together the points of local extrema. It may happen that 
the number of extrema decreases from time t, to t,+i. In such a case, one path, 
at least, can no longer be further extended in time and so, for that purpose, we 
introduce a "stopping time", denoted by Th - t 

The following lemma is established. 

Lemma 3.2. There exist continuous and piecewise affine curves /2 [0,T/] R I 
for q E E(uo), passing through the mesh points (vjh(.f), t?7) and having the following 
properties: 

(3.3) hb (t) = XJhl(n) + xJ?,(n+l) -XJh.(n)), t E [tm, tr?], 

for each n 0, 1, 2,..., Nqh with T'r = AThT < X 

(3.4) ~ /)j ? f1) IXJ;(n) -XJIq,(??,+I) < h; 

there are only a finite nutmber (uniformly bounded w. r. t. h) 
(3.5) 

of curves 0 h on each compact set 

and 

(3.6) X E 2p 2p+1 (tn)) U U' (X) t z2) is non-decreasizng, 
x E (E p 1(t77 ), ohp (tn)) 1 u'2(x, tn ) is non-increasing. 
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Furthermore, the functions wh: [0, T h] -> IR defined by 

(3.7) wh (t) = U7>, for t ? t < t A1 

are non-decreasirng if q is even, and non-irncreasirng if q is odd. 

Remark 3.3. 1) The definition (3.3) is not essential. All the results below still hold 
if 0,' is replaced by any (uniformly) Lipschitz continuous curve passing through 
the mesh points (xJ,hX)l tn). As a matter of fact, it is an open problem to show 

the strong convergence of the derivatives of approximate paths. By comparison, for 
the approximate solutions built by the random choice scheme, Glimm and Lax [10] 
proved the a.e. convergence of the first order derivatives of the paths. 

2) Introducing the stopping times T4z is necessary. At those times, certain paths 
cross each other and their extension in time is not well-defined. For instance, a path 
of maximum and a path of minimum can cross and "cancel out". The case of exact 
solutions (cf. the appendix) is simpler in this respect: the paths can be defined to be 
characteristic curves for all times, even when they are no longer paths of extrema. 

3) It is not interesting to trace the minimal (or maximal) paths of extrema. in 
the approximate solution. Such paths would not converge to the paths obtained in 
the continuous case. 

By construction, cf. (3.4), a path "jumps" up to one grid point at each time-step. 
So the slope of a path remains uniformly bounded by 1/A and the curves 'Oh are 

bounded in the W147oc norm, uniformly with respect to h and q. On the other hand, 
Lemma 3.3 implies that the scheme is TVD, so TV(tjh(tn)) is uniformly bounded. 
We thus conclude that the approximate solutions and the paths of extrema are 
strongly convergent, as stated in the following Lemmas 3.4 and 3.5. For simplicity, 
we keep the same notation for a sequence anid a subsequence. 

Lemma 3.4. There exist times Tq E [0, +oo] and Lipschitz contirnuouts curves ' q 
(O, Tq) --> R such that 

(3.8) Tqz - Tq as h - O, 

and 

(3.9) O /h_ ) q uniformly on each compact subset of Co([0, Tq)). 

Lemma 3.5. The sequence uh satisfies estimates (2.13)-(2.14), and so is utniformly 
stable irn the L??([0,oo),BV(R)) and Lip([0,oo),L1(R)) norms. There exists a 
function v irn the same spaces such that 

(3.10) u'j(x,t) -> v(x,t) for all times t > 0 and almost every x E R, 

and there exist functions wq in BV((O, Tq), R) such that 

(3.11) Wq +Wq almost everywhere on (0,Tq) 

for all q E E(uo). 

The convergence results (3.10) and (3.11) hold in particular at each point of 
continuity of v(t) and wq, respectively. Introduce now the following three sets, 
which provide us with a partition of the (x, t)-plane into increasing/decreasing 
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regions for v: 

Q1(V) = (X, t) b2p I(t) < X < 'b2P2+1(t), P1 < P2, t < T2PI, t < T2p2+1, 

and t > Tq, for all q= 2p1 + 1,...,2p2}, 

Q2(V) = {(X, t) b2p- I(t) < X < 'b2P2(t), P1 < P2, t < T2p1-1, t < T2P2, 

and t > Tq, for all q=2p1,...,2p2-1}, 

Q3(V) = Closure { ('q(t), t), for all relevant values of t and q}. 

The set Q3 (v), by construction, contains all of the curves ?/q including their end 
points. The sets Q, (v) and Q2 (v) are open and contain regions limited by curves 
in Q3(v). These definitions take into account the fact that the path need not be 
defined for all times. Observe also that an arbitrary point in Q3 (v) need not be a 
point of extremum value for v. The decomposition under consideration is not quite 
the obvious partition of the (x, t)-plane into regions of monotonicity for v. Strictly 
speaking, the sets QJ (v) may not be determined from the function v alone. 

Using Lemmas 3.2, 3.4, and 3.5, we immediately check that: 

Lemma 3.6. The limiting functions satisfy the properties: 

(3.12) v/Q1(v)(t) is non-decreasing in each subcomponent of Ql(v), 
V/Q2 (v) (t) is non-increasing in each subcomponent of Q2 (v), 

and 

(3.13) wq is non-decreasing if q is even and non-increasing if q is odd. 

Since the scheme is consistent, conservative, and converges in the L1 strong 
norm, we can pass to the limit in (2.1). It follows that v is a weak solution to (1.1). 
We note that, in the set Q, (v), the functions uh, and also v, are non-increasing. 
The Lax shock inequality holds for both uh and v. On the other hand, the cell 
entropy inequality (2.9) holds for uh in the non-decreasing regions, i.e., in Q2(V). 
The passage to the limit in (2.9) is a classical matter. 

Lemma 3.7. The function v is a weak solution to equation (1.1) and satisfies 

(3.14) v(x-, t) > v(x+,t) in the set Qi(v) 

and 

(3.15) &tU(v) + &,F(v) < 0 in the set Q2(v). 

The rest of this section is devoted to proving that the Lax shock inequality holds 
along the paths ?/q which we will attain in Lemma 3.10. In a first stage, we prove: 

Lemma 3.8. Along each path of extremum ?/q and for almost every t E (0, Tq) 
one of the following holds: 

(3.16) wq(t) = v(q(t)-, t) Or wq(t) = v('Oq(t)+, t). 

Roughly speaking, (3.16) means that that no cusp-like layer can form in the 
scheme near local extrema. The idea of the proof of Lemma 3.8 is as follows: 
we are going to integrate the discrete form of the conservation law (2.1) on a 
(small) domain limited on one side by an approximate path of extremum; then we 
shall integrate by parts and pass to the limit as h -- 0. Finally, we shall let the 
domain shrink and reduce to the path itself. To determine the limits of the relevant 
boundary terms as h -> 0, we have to justify the passage to the limit in particular 
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in the numerical fluxes evaluated along the approximate path. Lemma 3.9 below 
provides us with an a priori estimate for the oscillation of uh along the path, which 
follows from the quadratic decay property (2.12). 

Lemma 3.9. Along a path of extremum values < h, we have 

n=n+ 

13 13 min(|8 )+>n - 0 tJ (?1)+1 - 2) 
(3.17) n 7, 

q 
( ) - 

1 
( t +) + 1, 

for all 0 < n_ < n+ < Nh, where 

(3.18) 3 =- min(ca, 1/2). 

Proof of Lemma 3.8. We will prove that, for almost every t in (0, Tq), the following 
three Rankine-Hugoniot like relations hold: 

(3.19) - f ~d'q (t) (V (Oq(t) +, t) - V(Oq(t) -, t)) (3-19) ~ _dt 

+ f (v('q(t)+), t) - f (V('q(t)-, t)) = 0, 

(3.20) -d bq (t) (V(VJq(t)?, t) - wq(t)) + f (VQ(/q(t)?, t)) -f (wq(t)) 0 . 

Since there is only one non-trivial pair of values that achieves a Rankine-Hugoniot 
relation for a scalar conservation law with a strictly convex flux and a given shock 
speed d/q (t)/dt, the desired conclusion (3.16) follows immediately from (3.19)- 
(3.20). 

Observe that (3.19) is nothing but the standard Rankine-Hugoniot relation, since 
v is a weak solution to (1.1) and V)q is Lipschitz continuous. For definiteness we 
prove (3.20) in the case of the "+" sign. The proof of (3.20) with "-" sign is 
entirely similar. (Actually only one of the two relations in (3.20) suffice for the 
present proof.) 

Let O(x, t) be a test-function having its support included in a neighborhood of 
the curve f/q and included in the strip R x (0, Tq). So for h small enough the support 
of 0 is included in R x (0, Th), and all the quantities to be considered below make 
sense. Let us set 0j7 = 0(x3, tn). To make use of estimate (3.17), it is necessary 
to define a "shifted" path fbh, to be used instead of fbh. So we consider the set of 

*~~~~~~~ . 
indices 

p {(j, n)j > J (n) + c h(n)}, 

where ch(n) = 0 (respectively Ch (n) = 1) if Jqh(n) - 1 (resp. Jqh(n) + 1) achieves 
the minimum in the left hand side of (3.17). A shifted path is defined by 

(t) X J h (n) +cE (n) + (XJ1h (n+1)+c1h (n+1) - Jh(n)+6h(n))v t E [tX v,tt]n l 

Introducing the shifts ch (n) does not modify the convergence properties of the path. 
It is not hard to see, using solely the fact that the path is uniformly bounded in 
Lipschitz norm, that as h -> 0 

(3.21) ',h , Vq W1' ? weak-*. 
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We also set 

q ( ) J(n)+Eh (n) for t, < t < t+. 

Using (3.17) and (3.7) of hw , we can check that 

(3.22) wqh > Wq L1 strongly. 

Consider 

(3.23) I((U).- S - u? + - 
1/2g912))0/ 

h h 0, 
(n, j) c7hq 

which vanishes identically in view of (2.1). Using summation by parts gives 

Ih (0) -n+lon+l 5 -uon)h +gJh(f)eh(71/2OJh(t) 

(?t ') ep h n 

(3.24) + E ~~~Ujn+1 (ojn+1 _-ojn + gn+/ (on _on) r (3.24) + ~lO O) h?g~7(7lO) 
(n,j)Cph 

Ih (0) + 12h (0) + Ih(0). 

The passage to the limit in 43h(0) is an easy matter, since it has the classical form 
met, for instance, in the Lax-Wendroff theorem. We find that 

(3.25) I3h(0) - 13(0) J // (v&tO + f(v)&90)dxdt. 3 (0) __ 13 (0) 
X>lq (t)} 

To deal with 42h(0), we recall that the flux gjh(n)+ch(44/2 depends on two argu- 
ments, so satisfies 

g9JI(n)+,Eh(n)-1/2 f (UJ1(n)+E16(n)) 
+ O0 Ujh(n) 1+Eh(n) - Ujh(n)+Eh) 

- f(zCVh(tn)) + 0(UnUI-t ) = n Wq tn ) +? (] UJhl (n)- +,eh (n) -U Jqh (n)+,eh (n) 

Indeed, by construction, the point Jh(n) + Ch(n) - 1/2 is an end point of a cell 
achieving an extremum value: One has ch (n) {0, 1 }, so Jh (n) + Ch (n) - 1/2 C 
{Jh(n) - 1/2, Jqh(n) + 1/2}. Using (3.26), estimate (3.17), the Cauchy-Schwarz 
inequality, and the Lebesgue convergence theorem, it is not hard to prove that 

(3.27) h (0) __2_(0) j f(Wq(t))/q(t), t)dt. 

It remains to prove that 

(3.28) I1(t) w, (t) =-0t (t)wq (t)( t), t) dt- 

We return to the definition of the modified path and define eh(n + 1) by 

Jh (n + 1) + Ch (n + 1) = Jh(n +h e(n) + eqh(n + 1). 

Using only (3.21), one can prove that 

(3.29) 0q J(n)+Eh(n)Jh(n)+Eh(n) | 
j (t)0(q(t),t) dt 

n t 

We claim that 
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Namely, using (2.11) and the definition of ch(n + 1), we have either 

Ch(n)=1, Jh(n+1)=Jjh(n) or Jh(n+1)+1, andeh(n+1)=1 or 1 

or 

Ch(n)=1, Jh(n+1)=Jh(n) or Jh(n+ 1)+1, and eh(n+ 1)=-1 or 0. 

The term Ih (0) then can be rewritten in the form 

Ih (0) =+ 1 uj + 1 h - 0POjh 
j>Jh(n)+eh(n) j> Jh(n)+El,(n) 

= >3 ujnnh- >3 E u33h, 
j> J1(n-j)+Eh(n-1) j >jh (n) +Eh(n) 

so that 

If(0)~ =_ 
3 

UJh(n)+Eh(n) Jh(n)+Eh(n 
eh(n)=-1 

+ S 
Ujh(n)+Eh(n)-lOjh(n)+cEh(n)-1h 

elh (n) =1 

Observe that, in the second sum above, Jq(n) + cq(n)-1 Jq(n-1) + - j(n -1), 

and consider the decomposition Ih (0) = Ih I (0) + Ih2(0) with 

I1, (0) - > (UJh (n)+E(h)()-l 0Jh(n)+Eh(n) - I Jh(n)+ h(n) Jh(n) +e h 
eqh(n)=1 

and 

1,2(0) = 
3 

(n)+Eh(n)IJh(n) +E h - UJh(n)+Eh(n) J (n) +E 

h (n)=1 e h (n)-1 

On one hand, we have 

I~ (0) < 
>3 

Jh(n)+,Eh(n)-l Jh(n)+Eh(n)-1 - JQh(n)+Eh(n)Jq' (n)qec(n) |h 
eh(qn)= 

<0(1) >3 
UJ(n)+Eh(n)-1 

- 
hJqh(n)+Eh(n 

eqh(n)=1 

+ 0(1) >3 
0Jh(n)+Eh (n)-1 

- 
Jh(n)+hEh(n) 

eqh(n)=l 

and, in view of (3.17) and the smoothness property of 0, 

1,1(0) < O(1)h ( Ujh(n)-1 
- 

UJh(n) ) + 0(1)h 
n 

< 0(1) (h + h1/2) < O(1)h1/2, 

which implies 

(3.31) I h(0) -> 0 as h -> . 
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The expression for Ih2(0) can be simplified, namely 

I h (0) = _ZE eh (n)~ Jh (n) +eh (n) J h (n) +eh (n 1,2(o) 

= - 

E q q ~~~~q ()+q (n 

n 

Using (3.29), we find that 

(3.32) I1,2(0) -* I1(0) as h -> 0. 

In view of (3.25), (3.27), and (3.28), we conclude that 

(3.33) II(0) + 12(0) + 13(0) = 0. 

Finally, using in (3.33) a sequence of test-functions 0, whose supports shrink and 
concentrate on the curve ,bq, the desired Rankine-Hugoniot relation (3.20) with the 
"+" sign follows at the limit. This completes the proof of Lemma 3.8. D 

Proof of Lemma 3.9. For definiteness, we assume that Un%) is a maximum value 

and that 

min (UJh (n) - Jh ()i) UJh(n) - UJh(n)-l- 

The other cases are treated similarly. To simplify the notation, set j = Jh (n). By 
the uniform decay property (2.12), we have 

(3.34) t? nuT+1 a(uT -un n )2 

By the strong maximum principle (2.11), we have 

(335) i~~~~n-hI n 1 
(3.35) u - -u*_1 < - 

(u* -Un 

From (3.35), we deduce that 

Un+I < Uj _1 + I (Un -Un _1) 
(3.36) ~ ~ *- uj * 2 (Uj* j*_ ) 

(3.36) Un- I nUp_i) 

< n _ - min ((Ui -_ U ),(u* uni)2) 

Note that u-Un _ might be either < 1 or > 1. Then we get 

(3.37) u>11 < U -lmin ((uj -Uj*_-),(u* uj*_1)2) 

On the other hand, (3.34) can be written in the form 

(3.38) un+1 < u an -o (u>n - U>i)2. 

Moreover, using (2.11) again, we obtain 

uJnI ? Un-+ + n U+1) ? + n- 

Hence, in view of (3.36), 

(3.39) un+I < U - min ((Un -Un U,i (uU. , 
1) 2). 

It follows from (3.37)-(3.39) that 

(3.40) max (un+ 1,u1+ ,u+11) < Un - 3min ((Un -Un 1),(Uj -Uj1)), 

and thus 

(3.41) UJ(n+l) < Uj* - min ((un_ -un ) (u _ nU )2), 
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since u++l by definition achieves the maximum in (3.20). Finally, we have 
proved that 

(3.42) Ujh(n) -UJh(n+l) > f3min ((uj -j pi), (u3* -u>i)2) 

By assumption, Un -_ U unj - O Thus (3.42) gives (3.17) after summation 
w.r.t. n. D 

Lemma 3.10. We have 

(3.43) v(x-, t) > v(x+, t) in the set Q3 (v) 

The proof is based on the fact that one of the entropy criteria is satisfied on each 
side of a path: the Lax shock inequality on the non-increasing side, and the cell 
entropy inequality on the non-decreasing one. 

Proof. We claim that, along any path of extremum b.q, 

(3.44) V(l/q(t),t) ? V(/q(t)+,t) for a.e. t C (, Tq). 

We use the notation introduced in the proof of Lemma 3.8. A new difficulty arises: 
several paths may accumulate in a region. Lemma 3.8 was concerned with the 
discrete conservation law (2.1), which holds in both the non-increasing and non- 
decreasing regions. For the entropy consistency, we do not use the same criterion, 
and this complicates the proof. 

To begin with, consider a path f/q and a point (QVq(to), to), that is supposed to 
be an "isolated" point of change of monotonicity, in the sense that f,q_I(to) < 
1/q(to) < 1/q+1(to). By continuity, these inequalities then hold with to replaced by 
any t lying in a small neighborhood of to. For definiteness, we also suppose that 
f/q is a path of minimum values. We later analyze the case that two or more paths 
of extrema accumulate in a neighborhood of (g/q(to), to). 

Let 0 be a non-negative test function of the two variables (x, t) having its support 
included in a small neighborhood of (g/q (to), to). We can always assume that uh 

is non-increasing on the left side of the curve fbh, and non-decreasing on the right 
side. Using the notation introduced in the proof of Lemma 3.8, we aim at passing 
to the limit in 

Ih(O)=- ,3 (u 1 
-Uj + A (G1n2- 1/2)) 0o h > 0. 

(j, n) E h 

Note that lh(0) is non-positive, according to the cell entropy inequality (2.9) and 
since the uh 's are non-decreasing on the right side. 

Integrating by parts in Ih(Q) gives 

Ih (0)=_ (uy1o+1 - u70n)h 
(j,n) EP7q 

+ E Gjh(n)+Eh(n) 1/2 Jh (n)+-Eh(n)-1/2T 

(3.45)n 
q qq q 

+ 5 U7,+l (0+l _- 07)h + GCn> (on - On)T 

(j,n)E 11q 

i1 (0) + I2(0) + 43r(0). 
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The passage to the limit in the term I34(0) is a classical matter. The treatment of 
I4h(0) and Ilh(0) is similar to what was done to prove (3.27) and (3.28), respectively. 
Therefore we have 

(3.46) 1 h 
(0) _I1 (0) - j q (t) U(wq (t)) 0 (/q (t), t) dt, 

(3.47) Ih(0 I2(F) = (w. (t)) 0 (vb(t), t) dt, 

(3.48) (3 13 (0) II ( U)} (U(v) t 0 + F (v) &0) dxdt. 

It follows from (3.46)-(3.48) that 

(3.49) I1(0) + 12(0) + 13(0) > 0. 

Finally, using a sequence of test functions whose supports shrink and concentrate 
on the curve ,bq, we deduce from (3.49) that the entropy dissipation is non-positive 
along the path, i.e. 

- dt (t) (U (v (V (t) +, t)) -U (wq (t))) + F(v (Q (t) +, t)) -F (wq (t)) <0. 

Combined with (3.20), this inequality is equivalent to 

vQVq (t)+, t)) < wq (t), 

which yields the desired inequality (3.44). 
Consider next the case that several paths accumulate in the neighborhood of 

(./q (to), to). In view of (1.4), a finite number of paths only can accumulate at a 
given point. For definiteness we suppose that 

- the point (~/q (to), to) is a point of minimurii values for uh. 
- the curves f/q,+ and ,bq+2 coincide with f/q in a neighborhood of to; 
- and we have fbq-j < fLq and fbq+2 < f/q+3 in a neighborhood of to. 

Suppose that, for instance, wq(t) < Wq+2(t). The other cases are treated similarly. 
In this situation, we are going to prove that 

(3.50) V(q(t)-, t) > wq(t) = wq+i (t) > Wq+2(t) = V( (t)+, t) 

at those points t near to where 1/q(t) = fbq+(t) = 1/q+2(t). Of course, (3.41) is a 
much stronger statement than (3.34). By definition of the paths of extremna, we 
have 

wq(t) < wq+i(t) and wq+i(t) > Wq+2(t), 

v (q (t)-, t) > wq (t) and Wq+2 (t) < V QV (t) +, t) . 

Lemma 3.8 shows that 

wq(t), wq+i(t), wq+i(t) C {v(E (t>, t), V(/(t)+, t)}. 

Thus, in order to get (3.50), it is sufficient to -check the following two inequalities: 

(3.51) Wq+2(t) > V(?/q(t)+,t), 

(3.52) wq(t) > wq+i(t). 

On one hand, the argument used in the first part of the present proof applies 
directly to the path fbq+2(t) and the region located to the right of this curve, 
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since /q,+2(t) < Oq+33(t) in a neighborhood of to. As a consequence, we obtain 
Wq+2(t) > V(4'q+2(t)+,t), which is exactly (3.51), since q?+2 = bq 

On the other hand, to prove (3.52), let -ph +1 be the (small) region limited by 
the curves lbh and f h for t belonging to a small neighborhood of to. Specifically, 
Pqjq+1 is a set of indices of the form (j, n) defined along the lines of the proof of 
Lemma 3.8. In particular, both paths are modified according to estimate (3.17), as 
explained before. Consider 

(3 53) 1h(o) - S - 
(Uj -Uj +A (G>17/2 -G1/2)) 07h > 0. 

( j,n) 1qh q+l 

Note that Ih (0) is non-negative and 

ih(Q) = (u7+l1o+7 
- uyo7)h 

( j,n) E'qhq+1 

+ ? GJh(fl)+Ch(l)-1/2 f0Jh(r)+cqhri)-1/2 T n o 

- GJh (n)+E?h (n)-1/2 0Jh+Eh(n T 
n 

+ E Un +(0 on+-0j)h + IF172 (on - 

( h l(n+,E jh h n)+Ehl+(n - 

- Il (0) + I2 ,q(0) -Iq q+i(n) + 1 (0)2 

Using the technique developed for the proof of Lemma 3.8, we get 

Ilh(0) Uo I (0) f-/ dt) U ) h t dt 

J df/ q+i (t) U(wq+i (t)) 0(~/q+i (t), t) dt, 

4j,q(0) > q2,q(O) j F(wq(t)) OQ(q(t), t)dt, 

I2i,q+i(0) I2,q+1 (O ) - F(Wq+ (t)) 0( Vqi (t), t) dt, 

+ d 

It follows that 

(3.54) Ii(O) + 12,q(O) + 12,q+1(O) > 0, 

which, since f/q -/q?1 near to) is equivalent to the jump condition 

- qt (t) (U(wq+ (t))1-U(wq(t))) + F(wq+i (t)) - F(wq(t)) ? 0, 

which gives (3.52). This completes the proof of Lemma 3.10. D 

It is a classical matter to check that the initial condition (1.2) is satisfied by 
using (2.2) and the uniform BV bound. Since the function v(t) has bounded total 
variation, it admits left and right traces at each point, and (1.5) and (1.6) are 
known to be equivalent at a point of discontinuity. Therefore the following result 
follows from Volperth's proof in [37]. 
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Lemma 3.11. Supose v is a function of bounded variation and a weak solution to 
the conservation law (1.1), and satisfies the initial condition (1.2) and the inequal- 
ities (3.14), (3.15), and (3.34), where Ql (v) U Q2 (v) U Q3 (v) = R x R+. Then v is 
the unique entropy solution to (1.1)-(1.2). 

The proof of Theorem 2.3 is now complete. 
The limiting paths f/q associated with the scheme determine a decomposition 

of the plane into non-increasing/non-decreasing regions for the exact solution u. 
Such a decomposition is not unique, in general. Consider the decomposition found 
in the Appendix for the function v and the corresponding paths bpp. When v is 
not constant in any neighborhood of an extremum path bcp, the path is unique and 
must coincide with one of the paths fbq. When v is constant in the neighborhood 
of a path bop, then the path may be arbitrarily modified and it may happen that 
no limiting path f/q coincides with (pp. 

4. APPLICATION TO THE MUSCL SCHEME 

The purpose of this section is to apply Theorem 2.3 to van Leer's MUSCL scheme 
(for Monotone Upstream Scheme for Conservation Laws); cf. [23], [24]. This section 
also provides a proof of estimate (2.12) stated in Proposition 2.1, a new property 
of the Godunov scheme which does also hold for the MUSCL scheme. 

It is convenient to formulate (2.1) in terms of the incremental coefficients C+,n 
j-H1/2 

defined by 
(4.1) A 9?l/2 -~~~ f(Un) n (u)- 

j-,n2 1'2j-1/f2 

U g' 
/ 

(4.1) ~+1/2 n ri 3 C;1/2 n 97-1/ 

so that 

(4.2) u> + u,+ Cji?2(u,?i -u,) + C7? ' 1/2 (UT1-i -. ). 
The numerical viscosity coefficient (cf. Tadmor [35]) being defined by 

(4 3) ~~~~Qn = C+ ,n +C-,n (4.3) + 

the viscous form of the scheme is 

+ 2 + )f(-1)) + 2 -+ 1/2 ( + 3 

2 Qjn1/2 (U n_ 1 - Ujn 

Proposition 4.1. The scheme (2.1) satisfies the local maximum principle (2.11) 
provided 

(4.4) CJi:J7+/2 > 0, Cn2 > 0, and Cn'l + C>?2 < 2 (4.4) j+1/2 3-112 
and j-i1/2 3j-1/2<- 

A sufficient condition for (4.4) to hold is 

(4.5) c+Nn!2 > 0 and Qn /2 <1/4, 

Namely, if (4.5) holds, then 0 < Cj+,ni < 1/4 and 0 < C'+ _n < 1/4, so that (4.4) 
is satisfied. In particular, the Godunov and Engquist-Osher schemes satisfy (4.4) 
under the CFL condition (2.4). When the numerical flux is independent of A, the 
second inequality in (4.5) is always satisfied provided A is small enough. 
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The Lax-Friedrichs type schemes have a constant numerical viscosity QXn12- 
Q. For the original Lax-Friedrichs scheme Q = 1. Proposition 4.1 applies provided 
Q < 1/4. Observe that the monotonicity property does fail when Q C (2/3, 1]: take 
for instance f _ 0 and 0 _ for all j :& 0 but u' > 0. This initial data has one 
maximum poinlt, and at the next time step 

un+1 Q n + QQ)U + 
Q n 

admits two maximum points j =-1 and j = 1. A related observation was made 
by Tadmor in [35]: for Q < 1/2, better properties can be obtained for the Lax- 
Friedrichs scheme. 

Proof of Proposition 4.1. Inequalities (2.11) can be written in terms of the incre- 
mental coefficients, namely 

(4.6) 
1~ . pn 6,t. 1) < C+,n gn 1 C+,n C-,n bin +C-,n gn, 

2 min (+, j1 j-1)- j+1/2 j+l +2 ( j+1/2 - -1/2) i + -1/2 j-1I 

< -max (87?i, 67 -) 

with 

6L7+1 = Uj+1 -Ujn) bjn = O bn = u - 'U 

If (4.4) holds, then 

2C+jn 26gn + (1 -2Cj?/2 - 2C ?/2)6j +2C1 '2/26n ) 

is a convex combination of the 63's. So (4.6) and therefore (2.11) follow. D 

We now introduce van Leer's scheme, composed of a reconstruction step based 
on the min-mod limitor and a resolution step based on the Godunov solver. We 
use the notation introduced in Section 2. For simplicity in the presentation, we 
normalize the flux to satisfy f(0) = f'(0) = 0. From the approximation { u} at 
the time t = tn) we construct a piecewise affine function 

(4.7) jin (x) = un + snj(x - xj)/h for x e (xj112, Xj+1/2), 

where the slope s`k is 

(4.8) Si = minmod(uj -uy_1, (uj+1 - uj-)/2, uj+l -uj) 

with 

f min(a,b,c) if a > 0,b > 0, and c > 0, 
(4.9) minmod(a, b, c) max(a, b, c) if a < 0, b < 0, and c < 0. 

{ 0 in all other cases. 

We introduce the notation 

uJ1+1/2_ = u + si /2 and uj+1/2+ = u i+1-S,/2 

Then the solution is updated with (2.1), where the numerical flux is defined de- 
pending upon the values of the reconstruction at the interfaces. 
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(1) If either 0 < u0 < u> or 0 < u+ > ?u, then the numerical flux is defined by 
using the characteristic line traced backward from the point (Xj+1/2, tn+1/2) 

Since the latter has a positive slope, we set 

(4.10Oa) n 
f + f'(Un72)(V _- (4.10a) gj+1/2 = (+112-) + (+1/2-) (Vt1+1/2-) 

with v solving 

n ~~A 
(4.10b) n V + -f'/(v)n 

(2) If either u < u < 0, or u.+n7 < un < 0, then the backward characteristic 
has a negative slope and we set 

(4.11a) gjJ172 f (Un 7?+ f'/(Un~7~)( (4.11a) ~gj+1/2 = (+1/2+) + (+1/2+) (V U"+1/2+) 

with v solving 

(4.1lb) uv+1/2+ =+ -f (v)s+. 2 
(3) In all other cases we set 

(4.12) f(O) 0. 

Equations (4.10b) and (4.11b) can be solved explicitly for the Burgers equation, 
since then f'(u) = u is linear. Observe that the scheme reduces to first order at 
sonic points and extrema. 

The main result of this section is: 

Theorem 4.2. For A small enough, the MUSCL method defined by (4.7)-(4.12) is 
a generalized monotone scheme in the sense of Definition 2.2. When (1.3)-(1.4) 
hold, the scheme converges in the strong L1 topology to the unique entropy solution 
of (1.1)-(1.2). 

It would be interesting to extend Theorem 4.2 to higher-order methods such as 
the Woodward-Collela P.P.M. scheme. 

Proof of Theorem 4.2. We have to check that the scheme satisfies the three condi- 
tions in Definition 2.2. We always assume that A is, at least, less than or equal to 
1/4. 

Step 1. Local maximum principle. 
Estimate (2.11) is easily obtained by applying Proposition 4.1 and relying on the 

convexity of the flux function f. We omit the details. 

Step 2. Cell entropy inequality. 
Consider a region where the sequence {uX } is non-decreasing. We will use the 

entropy pair (U, F) with U(u) = u2/2 and F'(u) = uf'(u). Define the numerical 
entropy flux by 

(4.13i) G?+1/2 F(uXl/2-) + U'(U>+l/2-) (f (v) - 

uX2-))) 

(4.13ii) GUFl/2 =F(u+1/2+) + U'(u;2+1/2+) (f (v) - +1/2+)), 
and 

(4.13iii) G0 
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in cases (1), (2), and (3), respectively. Inequality (2.9) is checked by direct calcu- 
lation, for A small enough. Observe that case (3) is obvious since our scheme then 
reduces to a first order, entropy consistent scheme. 

For definiteness we treat case (1), i.e. f' > 0 for the values of u under consider- 
ation. We view the left hand side of (2.9) as a function of w = Ujl1/2-, u = 

U3) 
v = Uj+1/2- and the value wCv defined as 

w =w + -f'(zb)t, 
2 

where t stands for the slope in the cell j - 1. We also introduce v, defined by 
A 

v v + -f'(ib)s 2 
with s = 2(v - u). Since the approximate solution is non-increasing, we have 
wv <w < 2u-v <u <K v <v. Set 

Q(w, w, u, v; A) 

= U(U) - U (u) + A[F(v) + U'(v)(f(b) - f(v)) - F(w) - U'(w)(f() -f(w)) 

and 

u = u - A[f(v) + f'(v)(vi - v) - f(w) - f'(w)(Cv - w)]. 

Observe that 

0, Q = U' (U) Af ' (w) - AU' (w) f '(wv), 

and 

2 Q = U" (U)A2f'(W) - AU'(w) f"(wv) < -CA Iwl 

for w > 0 and A small enough. Therefore Q is a concave function in wb, and 

Q(w, w, u, v; A) < Q(w, w, u, v; A) - (w - zCv)0&Q(w, w, u, v; A) - CAlwI I - W12. 

But 

&7Q(w, w, u, v; A) = Af'(w) (U'(u-) - U'(w)) 
= U"(() Af'(w) [u - w - A(f(v) + f'(v)(vb - v) - f(w))] 
< CA u-wl 

for some > 0 and A small enough. This proves that 

Q(fv,w, u, v; A) < Q(w, w, u, v; A) - CA(Iv - wHlu - wl + IwI IU - W12) 

< Q(w, w, u, v; A), 

and we now simply use the notation Q(w, u, v; A). 
Taylor-expanding Q with respect to A shows that the dominant term is the first 

order coefficient in A given by 

QI (w, u, v) _-U'(u) (f(v) - f(w)) + F(v) - F(w), 

in which w < 2u - v < u < v. Since 

9Qi (W, u, V) (U'(U) - U'(w)) f'(w) > C lwl ju - WI, 

we have 
(2u-v 

Q, (w, U, V) < Q1 (2u -v, u, v) -C lwl / (u -z) dz, 
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SO 

Ql(w,u,v) < QI(2u- v,u,v) - C' Iw 2U - v - w lu- wl. 

It remains to study Qi (2u - v, u, v) = Qi (u, v) with u < v. We find that 

09VQI(u,v) = (U'(v) - U'(u))f'(v) + (U'(2u - v) - U'(u))f'(2u - v) 

= (v - u) (f'(v) - f'(2u - v)) < -C lu - vl'. 

It follows that Q(u, v) is a non-increasing function of v for all v > u, and since it 
vanishes for v = u, 

fQj (u, v) < -C' ju - VI'. 

This proves that the first order term in A in the expansion of the function Q is 
negative. 

The same arguments are now applied to the function Q(A) directly. We have 

&WQ(w, u, v; A) (U'(U) - U'(w)) Af'(w) 

= Af'(w) U"((u - w - A(f(v) + f'(v)(v - v7) - f(w))) 

=Af'(w) U"((u - w - AO(1)(u - w)) 
> AC lwl ju - wl . 

Therefore, 

Q(w, u, v; A) < Q(2u - v, u, v; A) - AC'Iwl 12z - v - wl Hu - wl. 

Denote Q(u, v; A) Q(2u - v, u, v; A); then 

Q(u, v; A) U(ui) - U(u) + A [F(v) + U'(v)(f() -f(v)) - F(2u -v)], 

where 

u = u - A[f(v) + f'(v)( -v) - f(2u - v)]. 

We easily compute that 

o9v 0 (u, v; A) U)) 
A - 

+ f'(2u - v) (U'(2u - v) - U'(ui)) + AA(u, v; A) 

with 

IA(u, v; A) I < C lu - vl. 

This establishes the desired conclusion for A small enough. 

Step 3. Quadratic decay property. 
Near a local extremum, the MUSCL scheme essent-ially reduces to the Godunov 

scheme. So it is enough to check the quadratic decay property (2.12) for the Go- 
dunov scheme. This can be done from the explicit formula (2.6). 

The simplest situation is obtained with the Godunov scheme and when f' has a 
sign, say is positive. Assume u' is a local maximum. We have 
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thus 

tt - A A(f(tt;') - f (uJ) 

> Af'(u>i) (uu - 2>1) + A(inf f "/2) ( 3t -u>i)2 

> A (inf f " /2) mnin (u'7,- u'7 1 ) 

This establishes (2.11) when f' > O. 
It remains to treat the sonic case where f' has no definite sign. We will rely on 

the following technical remark. Given two points such that 

u_ < 0 < u+, fQuU) = f(u+), 

there exist c1, c2 > 0 (independent of u?) such that 

C1 zUt < 'u+ I< C2 Ju4 I 

Considering the case u>1 < 0 < u7, and using Osher's formula for the Riemann 
problem, we have 

7-1 +1 max - min f) 
(u ( ? n ) ( ? 1) 

= -x( max f- f ) ()) 

= A(inf f"/2)( max f2 

> A(inf f"/2) min(ztl~1+ - uX 2 |u -u_ | 2) 

This completes the proof of Theoreml 4.2. C 
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APPENDIX: MONOTONICITY PROPERTY 

In this appendix we brieffly discuss the monotonicity property together with more 
basic properties of entropy solutions to conservation laws, which go back to Kruzkov 
[19] and Volpert [37]. In the paper by Keyfitz, [18], somewhat simpler proofs are 
available for piecewise Lipschitz continuous solutions. We are interested in the 
local versions of the properties, i.e. formulated in domains limited by characteristic 
curves. To cope with discontinuous solutions, we use the concept of generalized 
characteristic curves introduced for ordinary differential equations by Filippov [9] 
and developed in the context of conservation laws by Dafermos; see e.g. [7] and 
the references therein. We recall that, through any point (xo,to), there exists a 
funnel of forward and backward generalized characteristic curves, which fill up a 
domain {(1(t) < x < (i>(t)}. Here if n2 (respectively (M) is called the minimal 
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(resp. maximal) characteristic curve originating at (xo, to). It is known [9], [7] that 
a characteristic, say (, is Lipschitz continuous and for almost every time t > 0 
satisfies 

(A. 1) d< (t) {fl (u( it,) 
f _-(t)-= +(t) = 

U(((t) ,t): (A.1) ~dt () f (u+)-f (u-) if U_ ~4U 

where u? = u((,(t) ?, t). For our purposes, f is strictly convex and there is a unique 
forward characteristic issuing from (xo),to; and there is no need to distinguish 
between the minimal characteristic and the maximal one, with the exception of 
those points where to = 0 and uo has an increasing jump at xo; cf. [7]. 

Solutions u to (1.1) are Lipschitz continuous in time with values in L1 and, for 
all times t, u(t) has bounded total variation in x. 

The following properties follow from [37], [19] and the technique of generalized 
characteristic in [9], [7]. 

Proposition A.1. Let u be the entropy solution to (1.1)-(1.2). Given xi and X2 
with x1 < X2, consider the maximal forward characteristic (u (t) issuing from (0, xi) 
and the minimal forward characteristic ,u (t) from (0, X2). For all times t > 0, u 
satisfies 

(1) the local maximum principle for all t < s and y E ((u (s) , u(s)): 

(A.2) inf {U(x,t)} < u(s,y) < sup {u(x,t)}, 

(2) the local L1 contraction property: 

d rmln(2 (t) 42v (t)) 

(A.3) J/ u(x, t)-v(x, t) I dx < 0, 
dt max ((u (t), ( (t)) 

(3) the local order preserving property: 

(A.4) 
if uo (x) < vo (x) for all x E (max(&u (O), (v (O)) 7 min(4u (o), 2v (0))), 

then u(x,t) < v(x,t) for all x E (max((u (t), ,v(t)) < x < min(4u(t) , 2v 

(4) and the local TVD property: 

(A.5) d TV2u (t u(t) < O. 

dt ~1(t) 

where in (1) and (3) the function v denotes the solution to (1.1)-(1.2) with uo 

replaced by a function vo E BV(R), and the curves v(,t) and 4v(t) are defined in 

the obvious way. O 

In (A.5), TVb(w) denotes the total variation of a function w: (a, b) -* JR. The 
derivatives in (A.3) and (A.5) are to be understood in the distributional sense. At 
least with xi = 4u =-oo and x2 = ciu = 0, (A.5) is a direct consequence of (A.3) 
and the invariance by translation of the solution-operator for (1.1). 

The following proposition concerns the monotoni city property, which is a refine- 
ment to the statement that the solution-operator is monotonicity preserving, i.e. 
satisfies 

(A.6) if uo is monotone, then u(t) is monotone for all t > 0. 

Namely, (A.6) follows from (A.3) by taking xl = 1 u = -oo and x2 = 4u = oo and 
vo(x) = uo(x + y) for positive or negative values of y. 

It is convenient now to assume that (1.4) is satisfied. 
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Proposition A.2 (Monotonicity property). Suppose that the initial condition uo 
has a locally finite number of local extrema. There exist (Lipschitz continuous) 
generalized characteristic cuLrves (pq: [ 0, co) --J R -the index q describing a subset 
E(uo) of consecuLtive integers- such that 

(A.7) (pq < fOq+1, 

(A.8) there are only a finite number of such cutrves in each compact set, 

and, for all t > 0 and all relevant values of p, 

(A.9) 
u(t) is non-decreasing for x E ((P2p(t), (o2p+1 (t)), 

(A*9) u(t) is non-increasing for x E ((P2p- 1 (t), o2p (t)), 

and, as long as 9o2p(t) 4 902p+i(t), 

(A.1I 0) u(jo2p(t)+,t) is non-decreasing, 

U(902p+i (t)-, t) ts non-tncreastng. 

The paths 9P2p and P2p+1 are called a path of local maximum and a path of local 
minimum for u, respectively. By convention, ,O _ -oc for q > maxE(uo) and 
(,Oq- +o for q < minE(uo). 

If two initially distinct paths cross at a later time, then from that time they will 
coincide thanks to the uniqueness property for forward characteristics. Note also 
that such paths need no lonlger be paths of local extremum in a strict sense, but 
arbitrary characteristics, even though (A.9) would still hold. On the other hand, 
when simultaneously uo has a decreasing jump at a point x0, that uo (xo -) is a local 
maximum, and u(xo+) is a local minimum, then two equal paths originate from 
(0, x0), one being a path of minimum and the other a path of maximum. When 
simultaneously uo has an increasing jump at x0, that uo(xo-) is a local minimum, 
and that uo(xo+) a local maximum, then two distinct paths originate from (0, xo). 

Proposition A.2 is a classical matter in the literature, although no specific ref- 
erence seems available. Cf. however Harten [13] and Tadmor [35], where the ideas 
are developed. 

Proof of Proposition A.2. First of all, the poinlts '0q(0) and the set E(uo) are defined 
from the initial condition u0 in an obvious way so that the conditions (A.7)-(A.10) 
hold true at time t = 0. Let us define 92p (t) to be the maximal forward charac- 
teristic issuing from 902p (0). Similarly, let P2p+1 (t) be the minimal forward charac- 
teristics issuing from P2p+1(0). Indeed, one needs to distinguish between minimal 
and maximal characteristics only in the case of an initially increasing jump. It may 
happen that both a path of minimum and a path of maximum may originate from 
such a point of increasing jump. 

Property (A.7) is an immediate consequence of the uniqueness property of the 
forward characteristic. Condition (A.8) follows from the property of propagation 
with finite speed satisfied by solutions to (1.1) and the fact that the initial data 
has a locally finite number of local extrema. Indeed, (A.1) yields a uniform bound 
for the slopes of the characteristics. 

In order to establish (A.9) and (A.10), we first suppose that zt0 does not admit 
increasing jumps. Consider an interval of the form (02p (t), P2p+1 (t)) for those 
values of t when this interval is not empty. Note first that, taking 4 = 2p and 
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42 = 02p+1, the local maximum principle (A.2) implies in particular that 

(A. 11) u (902p (t) +, t) > uo (902p (?) +), 

U (92p+ 1(t)-, t) < UO((02p+1 (0)-) - 

Let w be the entropy solution to (1.1) associated with the initial condition 

(UO ((2p(O)+) if X < (P2p(O)I 

(A. 12) w(x, 0) = wo(x) _ < u(x) if 902p (O) < X < 902p+ I(0), 

UO (02p+ 1(0)-) if x > 902p+I(O). 

The data w0 is non-decreasing and, in view of (A.6), 

(A.13) the solution w is non-decreasing for all times. 

Let ~/2p and V/2p+1 be the forward characteristics associated with w and issued 

902p (O) and 902p+1 (0) at time t = 0, respectively. Observe that the maximum forward 
and the minimum forward curves coincide, since by construction w0 is continuous 
at 9p2p(O) and 902p+1(0). Note in passing that the function w satisfies 

(A.14) w(x{t) 
UO 

(p2p(0) ?) if x < V2p+ (t) . 
110 (o2p+ I(0)) if X > 4b2p+ I(t). 

Using (A.11) and (A.14) and the fact that f'(.) is increasing, one gets 

d02+l I(t) _< f ' (U (92p+ I (t) -, t)) f ' (Uo (902p+ I (?) -)) <_ dsbp+ (t),7 dt dt 
which implies 

(P2p+l (t) <_ f 2p+1l(t). 

Similarly, 

b2p (t) < 9P2p (t). 

Using the L1 contraction principle (A.3), it follows that 

u = w for 902p(t) < x < 02p+?I(t), 

and, in view of (A.13), the function u is non-decreasing and (A.9) holds. Using 

(A.9) and the local maximum principle (A.2) finally provides (A.10). The proof 

is complete in the case of an interval of the form (902p(t), 02p+l(t)). An interval 

(92p- I(t), 9o2p(t)) can be treated in a similar fashion. 

It remains to consider increasing jumps in u0. That situation can be treated by 

using the following property. Suppose u0 has an increasing jump at a point x0, and 

let om (t) and m (t) be the minimal and maximal forward curves from xo. It is 

known that at least for small times the function u(t) coincides with the rarefaction 

wave connecting the values tt0(x0?) in the interval (Gm (t), (M' (t)) . 

This completes the proof of Proposition A.2. C: 
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